Course details of CS 408 - Graph Theory

Course Name Graph Theory
Total Credits 6
Type T
Lecture 2
Tutorial 0
Practical 1
Selfstudy 0
Half Semester N
Prerequisite CS 207
Text Reference . Douglas B. West, Introduction to Graph Theory, Second Edition, Pearson Education Asia, 2002. 2. Bela Bollobas, Modern Graph Theory, Springer-Verlag New York, 1998. 3. Reinhard Diestel, Graph Theory, Third Edition, Springer-Verlag Heidelberg, 2005. 4. J.A. Bondy and U.S.R Murty, Graph Theory, Springer, 2008.
Description Matchings: Hallís matching condition, Tutteís 1-factor theorem, Petersenís theorem, f-Factors of graphs, Weighted bipartite matching algorithm, Stable matching algorithm, Edmondís Blossom algorithm. Connectivity: Vertex and edge connectivity, Ear decomposition, Mengerís theorem, Maderís disjoint paths theorem. Coloring of Graphs: Vertex coloring, Brookís theorem, Edge coloring, Vizingís theorem, List coloring. Planar Graphs: Eulerís formula, Characterization of planar graphs, Coloring of planar Graphs, Dual graphs, Crossing number Extremal Graph Theory: Turanís theorem, Graph Ramsey theory, Diracís theorem. Selected Advanced Concepts: Perfect graphs, Partitioning graphs into paths and cycles, Random graphs.
Last Update 22-04-2010 15:20:50.746517