

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MATERIALS MANAGEMENT DIVISION

Powai, Mumbai 400076.

Ref No.(PR No. 1000050693)

(Rfx No. 6100002458)

<u>Technical Specifications : BIOVIA Material Studio Academic Research</u> (Qty : 2)

Sr. No	Item Description	Detailed Technical Specification	Technical Compliance (Yes / No)	Additional Information (if any)
1	BIOVIA Ma	terial Studio Academic Research		
1.1	Materials Studio 3D Visualizer: Polymer builder Nanostructure builder Analog builder Transport device builder Mesostructure builder Crystal builder Surface builder Layer builder	A graphical user environment-in which user can construct, manipulate and view models of molecules, crystalline materials, surfaces, polymers, and mesoscale structures. This is to be complemented by a complete set of solution methods including quantum, atomistic, classical, mesoscale, and statistical that enable user to evaluate materials at various particle sizes and time scales. The software should allow user to easily build, modify, visualize and simulate a wide range of materials including molecular and inorganic crystals with following simulation capabilities: • Easily build and visualize many different material types from organometallic complexes to polymers, crystals, surfaces, and catalysts. • Identify compounds with optimal physicochemical properties for Quantitative		

		Structure-Activity Relationships and extend	
		the base tools to include a neural networks	
		model building method and accurate quantum	
		mechanical descriptors.	
1.2	BOVIA Material	The software is required to provide a complete	
	Studio Research suite	modelling and simulation environment which	
	with perpetual license	enable the researcher to predict and understand	
	option	the relationships of atomic / molecular	
		structure of a material with its properties and	
		behaviour. The software must consist of a wide	
		variety of robust computational modules	
		_	
		conforming to quantum, classical, mesoscale,	
		analytical, statistical and visualization tools as	
1.0	DIOTH 1	described below	
1.3	BIOVIA Materials	Should be able to generate chemical rate	
	Studio CANTERA	equations. It should provide environment for	
		configuring the thermodynamic input, and for	
		executing these calculations. Cantera Reaction Editor should enable users to introduce new	
		species and reactions, optionally with reaction	
		rates determined from Materials Studio	
		DMol3, into complex reaction schemes with	
		existing experimentally determined	
		thermodynamic data.	
		The software connects the quantum chemical	
		reactions to CSTR, PFD, TPD analytical	
		calculations.	
1.4	BIOVIA Materials	Materials Studio CASTEP simulates the	
	Studio CASTEP	properties of solids, interfaces, and surfaces for	
		a wide range of materials including ceramics,	
		semiconductors, and metals using a plane-wave	
		density functional method.	
1.5	BIOVIA Materials	DMol3 is used to model the electronic structure	
	Studio DMol3	and properties of organic and inorganic	
		molecules, molecular crystals, covalent solids,	
		metallic solids, and infinite surfaces using	
		DFT. DMol3 uses numerical basis sets as basis	
		rather than Gaussian basis. This description	
		allows for better quality orbitals, minimized	
		BSSE correction and better description for	
		weak bonds. Localized basis calculations are	
		enabled for both periodic and non-periodic	
		chaoica for both periodic and non-periodic	

		10000+ cores CPUs for large scale system	
1.0	DIOMA M. 1	linear DFT calculation.	
1.9	BIOVIA Materials	Materials Studio QMERA employs QM/MM	
	Studio QMERA	method combining the accuracy of a quantum	
		with the speed of a forcefield calculation. This	
		approach should make it possible to perform	
		accurate calculations on very large systems for	
		substantially less effort.	
1.10	BIOVIA Materials	Materials Studio VAMP is capable of rapidly	
	Studio VAMP	predicting many physical and chemical	
		properties for molecular organic and inorganic	
		systems using a semi-empirical molecular	
		orbital method. Materials Studio VAMP is an	
		ideal intermediate approach between forcefield	
		and first principles methods.	
1.11	Plug-in to Gaussian	Access Gaussian's broad range of ab initio	
	software	modeling methods via the easy-to-use	
		graphical interface.	
1.12	BIOVIA Materials	Materials Studio Adsorption Locator finds low-	
	Studio Adsorption	energy adsorption sites for molecules on both	
	Locator	periodic and non-periodic substrates	
1.13	BIOVIA Materials	Should allow to construct representative	
	Studio Amorphous Cell	models of complex amorphous systems	
		constituting small molecules, metallic and non-	
		metallic interfaces, polymers and ceramics	
		using Monte Carlo based algorithms.	
1.14	BIOVIA Materials	Predicts phase diagrams and interaction	
	Studio Blends	parameters for liquid-liquid, polymer-polymer,	
		and polymer additive mixtures, phase	
		equilibria, and separations technology.	
1.15	BIOVIA Materials	Provides conformational search algorithms and	
	Studio Conformers	analysis tools to characterize molecular	
		conformation and flexibility. The search	
		method should include Random sampling,	
		systematic grid scan method, Boltzmann jump	
		method and should allow to analyse various	
		properties such as RDF, RMSD, RoG etc.	
1.16	BIOVIA Materials	It offers molecular mechanics and dynamics	
	Studio Forcite and	methods for molecules and periodic systems.	
	Forcite Plus	The tool includes a wide range of analysis	

	1		· · · · · · · · · · · · · · · · · · ·	
		features to predict mechanical properties,		
		diffusivity, local structure, density variations,		
		cohesive energy density, dipole autocorrelation		
		functional and more. Supported forcefields are		
		Materials Studio COMPASSIII, CVFF, PCFF,		
		Dreiding, and Universal.		
		Can perform reactions in MS Forcite classical		
		module by referring to transition state		
		calculations created in MS DMol3. This table		
		is referred during molecular dynamics to		
		perform reaction MD via MC-MD method		
		implemented as MS Reaction Finder script.		
		Machine Learning Interface Potentials (Force		
		fields) using message passing or multiatomic		
		cluster expansion (MACE) potential for		
		simulations. MACE is an architecture for		
		machine-learned potentials for atomic		
		simulation.		
		Simulation.		
		MACE-OFF23 with closed shell organic		
		molecules. MACE-MP0b with inorganic		
		materials.		
		materials.		
		It also supports execution on GPUs for		
		accelerated performance.		
1.17	BIOVIA Materials	GULP is a method for optimization, property		
1.1/	Studio GULP			
	Studio GULF	calculation and dynamics of materials. It allows		
		to utilize the GULP ReaxFF library, ReaxFF		
		SEI2021, for modeling the surface-electrolyte		
		interphase. Additionally, it allows to calculate		
		properties for variable charge models,		
		including charge derivatives for electric fields.		
		This enhancement enables GULP ReaxFF		
		calculations with electric fields.		
1.18	BIOVIA Materials	Sorption provides a means of predicting		
	Studio Sorption	fundamental properties needed for		
		investigating adsorption and separations		
-	<u> </u>	·		

		phenomena, such as sorption isotherms and	
		Henry's constants.	
1.19	BIOVIA Materials	Mesocite is a coarse-grained simulation	
1.17	Studio Mesocite	module for the study of materials at length	
	Studio iviesocite	scales ranging from nanometers to micrometers	
		and time scales from nanoseconds to	
		microseconds. Materials Studio Mesocite can	
		provide structural and dynamic properties of	
		fluids in equilibrium, under shear or in	
		confined geometries.	
		Granular Molecular Dynamics: Study the	
		formation of structures at the scale of particle	
		grains and simulate how those structures	
		change during manufacturing steps. One can	
		utilize the Granular Dynamics task in Mesocite	
		to simulate the motion of particles with negligible thermal velocity, predicting the	
		arrangement of mixed particle systems.	
		Supported force fields include Shinoda, MS	
		Martini3 with elaborate tools for Coarse	
		graining molecules to beads for both	
		preprocessing and post processing tasks.	
1.20	BIOVIA Materials	MesoDyn is a classical density functional	
	Studio MesoDyn	method for studying the long length- and time-	
		scale behaviour of complex fluid systems, in	
		particular the phase separation and structure of	
		complex polymer systems.	
1.21	BIOVIA Materials	It allows to predict crystal morphology from	
	Studio Morphology	the atomic structure of a crystal. Morphology	
		allows for the prediction of crystal shape, the	
		analysis of crystal surface stability, the	
		development of tailor-made additives, and the	
		control of solvent and impurity effects.	
1.22	BIOVIA Materials	Polymorph Predictor has been developed for	
	Studio Polymorph	use with fairly rigid, non-ionic or ionic	
	Predictor	molecules composed primarily of carbon,	
		nitrogen, oxygen, and hydrogen. The approach	
		is based on the generation of possible packing	
		arrangements in all reasonable space groups to	

			T
		search for the low-lying minima in lattice	
		energy.	
1.23	BIOVIA Materials Studio Reflex:	Reflex simulates X-ray, neutron, and electron powder diffraction patterns based	
	Reflex Plus	on models of crystalline materials. Reflex	
	Pattern Processing	Plus offers a complete package for the	
	Powder Diffraction	determination of crystal structures from	
	Powder Indexing Powder Refinement	medium- to high-quality powder diffraction	
	Powder Quantitative	data.	
	Phase Analysis (QPA) Powder Solve	Reflex QPA extends the Reflex functionality	
		for quantitative phase analysis, allowing for	
		the determination of the relative proportion	
		of different phases, including both inorganic	
		as well as organic systems, in a mixture	
		based on powder diffraction data.	
		Direct space methods for solving crystal	
		structures from X-ray (or neutron) powder	
		diffraction data involve generating a large	
		number of trial crystal structures in direct	
		space and finding the solution that minimizes the figure of merit.	
		Powder Solve uses a combined figure of	
		merit. This combines information from the	
		experimental diffraction pattern, in the	
		form of the Rwp measure of similarity, with	
		an energetic contribution which accounts for	
		the fact that possible structure solutions should be free of close contacts between	
		structural fragments.	
		bu ucturur ir uginento.	
		Powder Refinement for performing	
		modified Pawley or Rietveld refinement of	
		crystal structures against experimental data	
		and for joint optimization to match	
		experimental powder patterns while	
		simultaneously minimizing the potential	
		energy.	

1.24	BIOVIA Materials	QSAR's (Quantitative Structure-Activity /	
	Studio QSAR and	property Relationships) integration in	
	QSAR Plus	Materials Studio provides access to a wide	
		range of descriptors and advanced analysis	
		capabilities to help generate high quality	
		structure activity / property relationships.	
		QSAR includes a wide range of descriptors	
		including topological and electro-topological	
		descriptors. Also, Jurs descriptors enable	
		charge distribution on solvent surfaces to be	
		examined; VAMP Descriptors further extend	
		the range of 3D descriptors into those including	
		electronic interactions; and GFA applies a	
		sophisticated genetic algorithm method to	
		calculate quantitative structure-activity /	
		property relationships.	
1.25	BIOVIA Materials	Synthia calculates properties of homo- and	
	Studio Synthia	copolymers using advanced Quantitative	
		Structure-Property Relationships (QSPRs). It	
		allows researchers to rapidly screen candidate	
		polymers for a wide range of properties.	
1.26	Documentation	Software comes with in-detail theory covering	
		the concepts of computational materials	
		modelling and include tutorial examples to	
		understand software operation.	
1.27	Warranty of the system		1 year