

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

MATERIALS MANAGEMENT DIVISION

PR No. 1000049276 RFQ No. 3600002997

Epitaxial Growth of Si/SiGe heterostructures on Si(100) substrates with subsurface strained Si quantum well

Sr. No.	Feature	Specification	Technical compliance (YES/NO)	Additional information (if any)
1	Substrate	Single-side-polished p-type Silicon wafers of 200 mm diameter, with miscut angle ≤ 0.5°, thickness varying between 500 μm to 750 μm and resistivity varying between 10 Ohm-cm and 100 Ohm-cm.		
2	Heterostructure	SAMPLE 1 (2 Nos.) Layer 1: 3-µm-thick, linearly graded Si _{1-x} Ge _x buffer layer with Ge content (x)		
		varying from $x = 0$ in the bottom, to $x = 0.3$ in the end. Layer 2 : 1- μ m-thick, Si _{1-x} Ge _x buffer layer		
		with constant Ge content (x) $x = 0.3$. Layer 3: 225-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) $x = 0.3$. Layer 4: 8-nm thick, Si quantum well.		

Layer 5: 40-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3.

Layer 6: 2-nm thick, Si cap.

SAMPLE 2 (4 Nos.)

Layer 1: $3-\mu m$ -thick, linearly graded $Si_{1-x}Ge_x$ buffer layer with Ge content (x) varying from x=0 in the bottom, to x=0.3 in the end.

Layer 2: 1- μ m-thick, Si_{1-x}Ge_x buffer layer with constant Ge content (x) x = 0.3.

Layer 3: 225-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3.

Layer 4: 8-nm thick, Si quantum well.

Layer 5: 50-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3.

Layer 6: 2-nm thick, Si cap.

SAMPLE 3 (2 Nos.)

Layer 1: $3-\mu$ m-thick, linearly graded $Si_{1-x}Ge_x$ buffer layer with Ge content (x) varying from x = 0 in the bottom, to x = 0.3 in the end.

Layer 2: 1- μ m-thick, Si_{1-x}Ge_x buffer layer with constant Ge content (x) x = 0.3.

Layer 3: 225-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3. The $Si_{1-x}Ge_x$ buffer layer should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 4: 8-nm thick, Si quantum well. The quantum well should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 5: 40-nm thick $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3. The $Si_{1-x}Ge_x$ buffer layer should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 6: 2-nm thick, Si cap.

SAMPLE 4 (3 Nos.)

Layer 1: $3-\mu$ m-thick, linearly graded $Si_{1-x}Ge_x$ buffer layer with Ge content (x) varying from x = 0 in the bottom, to x = 0.3 in the end.

Layer 2: 1- μ m-thick, Si_{1-x}Ge_x buffer layer with constant Ge content (x) x = 0.3.

Layer 3: 225-nm thick, $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3. The $Si_{1-x}Ge_x$ buffer layer should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 4: 8-nm thick, Si quantum well. The quantum well should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 5: 50-nm thick $Si_{1-x}Ge_x$ buffer layer with constant Ge content (x) x = 0.3. The $Si_{1-x}Ge_x$ buffer layer should contain isotopically purified Si, with the ²⁹Si isotope reduced to 800 ppm or lower.

Layer 6: 2-nm thick, Si cap.

SAMPLE 5 (3 Nos.)

Layer 1: $3-\mu$ m-thick, linearly graded $Si_{1-x}Ge_x$ buffer layer with Ge content (x) varying from x=0 in the bottom, to x=0.3 in the end.

Layer 2: 1-μm-thick, Si_{1-x}Ge_x buffer layer

		with constant Ge content (x) x = 0.3.
		With constant oc content (x) x = 0.5.
		Layer 3: 225-nm thick, Si _{1-x} Ge _x buffer
		layer with constant Ge content (x) x = 0.3.
		The Si _{1-x} Ge _x buffer layer should contain
		isotopically purified Si, with the ²⁹ Si
		isotope reduced to 800 ppm or lower.
		Layer 4: 8-nm thick, Si quantum well. The
		quantum well should contain isotopically
		purified Si, with the ²⁹ Si isotope reduced
		to 800 ppm or lower.
		Layer 5: 60-nm thick Si _{1-x} Ge _x buffer layer
		with constant Ge content (x) x = 0.3. The
		Si _{1-x} Ge _x buffer layer should contain
		isotopically purified Si, with the ²⁹ Si
		isotope reduced to 800 ppm or lower.
		Layer 6: 2-nm thick, Si cap.
3	Process	The required Si wafers, as specified
		earlier, should be procured and
		provided by the vendor
		2. All layers should be grown by
		chemical vapor deposition, using
		appropriate gas source precursors
		3. A sufficiently low and uniform
		growth temperature of layers 3, 4, 5
		and 6 should be chosen to avoid Ge
		intermixing of the Si quantum well.
		4. Before growth of layer 3, chemical-
		mechanical polishing of layer 2
		should be carried out. The as-grown
		thickness of layer 2 should be such
		that after CMP of this layer, the
		remaining thickness is 1 μm
4	Metrology	The thickness variation of layers
		· I
i		1. 2 and 3 should be maintained
		1, 2 and 3 should be maintained to within 10 % of the specified

	values, as measured by XTEM	
2.	The thickness variation of layers	
	4, 5 and 6 should be maintained	
	to within ±1 nm of the specified	
	values, as measured by XTEM	
3.	The Ge-content of the Si _{1-x} Ge _x	
	layers (layers 1, 2, 3 and 5) should	
	be maintained to within 1 $\%$ of	
	the specified values, as measured	
	by SIMS	
4.	All thickness and composition	
	calibration data should be	
	provided along with the	
	heterostructure samples.	
5.	The specifications of the used	
	wafers, supporting compliance to	
	the specifications provided for	
	the same, should be provided by	
	the vendor.	